Quantum scars and non-thermal phenomena in many-body quantum systems
Date
Friday February 26, 20211:30 pm - 2:30 pm
Location
ZoomFiona Burnell
University of Minnesota
Abstract
There are a few well-known ways for quantum mechanical, many-body systems to avoid coming to thermal equilibrium. For example, we know of two classes of systems -- integrable systems, and many-body localized systems -- for which conservation laws prevent any eigenstate from reaching (conventional) thermal equilibrium. More recently, a much more subtle type of non-thermal quantum phenomenon has been discovered, dubbed many-body quantum scars. In these systems, a small number of eigenstates (and hence a small number of initial conditions) have non-thermal behavior, while most initial states will approach thermal equilibrium in the usual way. I will give a general picture of how and when this phenomenon arises, and discuss several examples of systems exhibiting exact quantum many-body scars.
Upcoming Events
Jan
24
Friday
Rayf Shiell - Ocular biomechanics, Optics education
Departmental - Rayf Shiell - Ocular biomechanics, Optics education
Jan
31
Friday
Ignacio Franco - Theory on physics, optics, nanoscience, chemistry
Departmental - Ignacio Franco - Theory on physics, optics, nanoscience, chemistry